

Abstract—The ATLAS TDAQ network consists of four separate
Ethernet based networks which together total over 4000 ports
with 200 edge switches and 6 multi-blade chassis switches at the
core. System checks are invoked at every level of the installation.
The full installation is described in different static databases.
Tools are provided to automatically cross-check these for
consistency. The configuration management is centralized:
configuration files stored in a database are distributed to all
devices and the actual settings are periodically verified.
Monitoring systems are deployed to validate the connectivity,
identify malfunctions and confirm the resources availability upon
request from TDAQ control. Relevant operational statistics (e.g.
port status and throughput) are continuously logged and made
available to TDAQ control. Watches and alarms are set for
dynamic threshold violations and the complete instantaneous
status can be viewed at different levels of abstraction in a 3D fly-
through. A tool-set has been developed to demonstrate aggregate
achievable cross-sectional bandwidth for TDAQ-specific traffic
profiles, as well as to analyze traffic flows and hot spot behaviour.

I. INTRODUCTION

T he architecture of the ATLAS TDAQ networks has
already been described in [1] and the first stage of the
installation has been functioning since autumn 2006. A set of
tools and support procedures are being put in place to ensure
that the installation is consistently described, that all the
elements are functional, and that failures are rapidly diagnosed,
to minimize any potential down time. Statistics are gathered in
real time to indicate the performance of the network, to assist
in system analysis and to provide reliable status information to
the experiment’s run control. Status information is displayed in
both 2D and 3D form. Specific tools have been developed to
probe the behaviour of targeted portions of the network and
determine realistic achievable throughput.

II. CROSS CHECKING INSTALLATION DATABASES
The installation is described graphically using NetDesign

[2], a Microsoft Visio® based drawing package. The physical
elements such as switches and processors are described in two

separate databases. The ownership, serial numbers and
maintenance contacts are stored in the MTF database [3], while
their geographical location is stored in Rack Wizard [4]. In
addition, all network connected devices have their service
settings described in the LANDB database [5], and cables are
described in the cable database [6].

Each of these databases has its own data access interface and
is maintained by many different people, each with their own
particular focus. It is therefore likely that there will be
omissions and errors at the time the data is first entered. Even
if extensive cross checking is done there will inevitably be a
divergence over time as material is moved, repaired or
modified and only a sub-set (if any) of the relevant databases is
updated. To avoid this, and ensure that the data across the
various databases is consistent at all times, a tool has been
developed to automatically cross check all these static
databases.

Fig. 1 illustrates the block diagram of the database
consistency check application. It is written in Java, mainly to
take advantage of the supported interfaces, such as Java
Database Connectivity (JDBC) [7] API, Simple Object Access

Operational Model of the ATLAS TDAQ
Network

S. M. Batraneanu a,b A. Al-Shabibi c, M. D. Ciobotaru d,b,
M. Ivanovici e, L. Leahu a,b , B. Martin a, S. N. Stancu d,b.

a CERN, Geneva, Switzerland,
b University “Politehnica” of Bucharest, Bucharest, Romania,

 c Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
 d University of California, Irvine, Irvine, USA,

 e University Transilvania of Brasov, Brasov, Romania.

Fig. 1. Database consistency checking.

Protocol (SOAP) [8] API, and the Common Object Request
Broker Architecture (CORBA®) [9] API, required by the
proliferation of different database access requirements.

To allow for an easy extension of the application to cover
other databases, or additional clients, the data processing core
is clearly separated from the data access components and the
client Web components that use JavaServer Pages (JSP) [10]
technology.

Consistency checks operate by cycling through records in
each database and using common key properties to identify the
corresponding records in the other databases. This is done for
each database in turn. The common key between LANDB and
MTF is the MAC address of the device, while between MTF
and Rack wizard it is the PartID. In this way, records in one
database that have no corresponding records in the others, or
for which the corresponding records have inconsistencies such
as different names, can all be identified. Once the Spectrum1
server is fully functional it is intended to add a CORBA
interface to it to check if all the objects discovered by
Spectrum have corresponding entries in the static databases.
Work to incorporate the NetDesign database check is also
foreseen.

The consistency check can be run manually, for example
after updating the databases to ensure that all relevant entries
have been completely registered, or automatically at regular
intervals as a background check.

III. NETWORK CONFIGURATION
The scale of the networks deployed in the TDAQ system

(order of 200 managed devices) calls by itself for the
automation of the configuration task. Not only is the system
large, but its gradual deployment will impose the need to
simultaneously manage different flavours of equipment and/or
software versions. Currently there are several commercial
solutions for network configuration management (NCM),
offering an extensive set of features. Since only a reduced sub-
set of these features is essential for the particular case of
configuring the TDAQ networks, the cost of deploying
commercial software cannot be justified. The complexity of the
configuration management task is significantly reduced by the
“static” nature of the TDAQ networks configuration. Once
installed, the configuration of a certain device does not need to
change “on the fly”. Regular upgrades and changes are
performed during foreseen maintenance periods. Thus the
ability to perform dynamic changes on the network
configuration is a desirable feature, but not a “must” for the
NCM system. The emerging open source utilities for
configuration management [11] appear as a promising
alternative for this purpose in the close future.

Currently a set of custom Python [12] scripts is used for
configuring the network devices. Since this approach is

1 Spectrum is the software package deployed for network health monitoring

(see Section IV-A).

unlikely to scale as the system grows, we plan for a coherent
architecture for network configuration management (see Fig.2).
A database is used to store the inventory of all the devices in
the network (and eventually topology information), including
repositories for device configuration files and firmware
images.

The Front-End and Configuration Engine (FCE) provides
the network administrator with a representation of the network
(based on information from the database), and manages the
three essential management operations together with the
appropriate logging facilities.

A. Applying configuration commands
A Common Configuration interface (CCI) enables

performing regular configuration tasks (e.g. enabling or
disabling ports, configuring VLAN membership) using the
same “language”, regardless of the device type and
manufacturer. This language should be scriptable, i.e. allow the
user to apply a sequence of configuration actions to a desired
set of devices. The CCI implementation translates the common
“language” into configuration actions specific to each device
through NETCONF [13] (if available), SNMP (Simple
Network Management Protocol) and ultimately through the
command line interface (CLI).

In order to provide full flexibility, the FCE allows the
operator to bypass the CCI and directly perform changes on the
device (through the CLI or SNMP).

B. Configuration file management
Based on the information from the network representation

databases, the FCE should be able to make snapshots of the

Network Representation
Database

Device

Netconf
Engine

Common Config Interface

CLI
Engine

Startup/running
config

FrontEnd and Config
Engine

SNMP
Agent

Network Administrator

Secondary Boot Flash

Primary Boot Flash

(T
)F

TP

(T
)F

TP

Fig. 2. Network configuration management.

configuration files for all the devices, either at pre-configured
intervals or on demand. These snapshots can be stored in the
Config Repository of the database, and the FCE should be able
to “push” a known revision from the database onto the network
devices. Configuration files can be uploaded to or downloaded
from network devices using a file transfer protocol, like TFTP
(Trivial File Transfer Protocol).

C. Firmware management
An approach similar to the one for the configuration file

management is taken. Most of the devices support booting
from two memory locations (primary and secondary). The
firmware (FW) upgrade policy should make sure that one of
the boot flashes contains the “last validated FW version”,
while the other one receives the upgraded version.

D. Logging System
A coherent logging system is important for troubleshooting

and understanding the sequence of occurrence of certain
events. Thus, devices must have their clocks synchronized
using the Network Time Protocol (NTP), and make use of a
common syslog [14] server.

IV. NETWORK MONITORING

A. Spectrum
Spectrum [15] is the commercial network monitoring

package employed, and provides various services, e.g. polling,
alarm notification and data archiving. Its main tasks are to
maintain a model of the full network in its core application,
called the SpectroServer, and to constantly poll the network
devices for information using SNMP. Spectrum is based on a
client-server architecture, where the server is the SpectroServer
and the clients are independent applications that connect to the
server and are provided access to the data in the SpectroServer
knowledge base. The OneClick Console is a client application
used for visualizing the status of the network in a 2D layout.
For example, Fig. 3 depicts a snapshot of a TDAQ data
network, where all devices but one are working properly.

The concept that Spectrum relies on when building and
updating its knowledge base is the model. Every network
device, component, and application is represented as a model
inside the SpectroServer. Keeping an up-to-date representation
of the network is the task of the SpectroServer. This can be
done synchronously, with SNMP requests being issued at five
minute intervals, or asynchronously when it is notified by the
network device itself of relevant events via the trap
mechanism2. It is also possible for SpectroServer to change a
writeable value in a device’s Management Information Base
(MIB) using the same protocol, SNMP. It is worth mentioning
that the acquired version of Spectrum offers SNMP support for
authentication, encryption and 64-bit counters. The last

2 When detecting abnormal conditions, the SNMP agent on the device can

issue asynchronous alerts (SNMP traps).

capability is important when monitoring interfaces with high
speed links because it reduces the problems caused by a too
rapid cycling and wrap around of the relevant counters.

One important role of Spectrum is to provide network
specialists with the quickest possible way to detect, isolate and
resolve problems. When a network problem is detected or
reported by a device via an SNMP trap, the SpectroServer can
generate an alarm for the model or models involved. In the
event of multiple simultaneous error conditions, Spectrum will
correlate them and derive the root cause of the failure, then
issue an alarm for just that device.

Spectrum offers custom application access to the
SpectroServer data via a CORBA based API. Using this
mechanism, useful network information can be published to
the TDAQ control applications or any other software that
requests it.

Traffic statistics are needed for performance monitoring at
the highest practicable rate. Even at low rates, maintaining
these statistics in the knowledge database would rapidly
overrun the storage capacity and so a different approach is
needed. The SSLogger client program is used to request traffic
statistics from each node and to update the received statistics in
raw data files (plain text). These are updated every 30 seconds
and then added to a Round Robin Database [16]. This limits
the maximum storage requirements, but also the length of time
the data can be stored. With the current settings this is of the
order of one week for all the monitored ports at maximum time
resolution.

B. sFlow
The SNMP statistics provided by Spectrum offer an

aggregate view on the traffic levels in various places of the
network. Average link occupancies can be measured, but
SNMP does not provide any information on where this traffic
is moving from or to, or what type of packets make up the

Fig. 3. 2D network visualization.

flow. When troubleshooting network congestion issues or just
for simple health monitoring, it is often useful to know the
contents of the data streams in more detail. For the TDAQ
network it is intended to use sFlow [17] for this purpose. sFlow
is a technology based on statistical sampling. Packet descriptor
samples are saved by network switches and submitted to a
central collector. The samples are then analyzed by the
collector and traffic characteristics are inferred. A simple
collector and analysis package has been developed to explore
this technology. Its most important feature is the ability to
identify network conversations, i.e. packet exchanges between
pairs of source and destination IP or MAC addresses.
Conversations can further be classified based on UDP/TCP
port numbers if necessary. For each port in the network, a
histogram of the per-conversation traffic is produced.

Having the traffic profile for each switch port, pie-charts as
shown in Fig. 4, and traffic matrices can be generated. The
"top-users" of a link as well as any abnormal traffic patterns
can be immediately detected.

The package is implemented in Python and this facilitates
any future functional extensions or integration with other
applications. For example, one possible direction for future
work is to use the TDAQ specific protocol headers to classify
the traffic.

C. High-speed SNMP monitoring
For specific monitoring requiring high sampling rate (i.e. a

few problematic ports of the network), the YATG (Yet
Another Traffic Grapher) package [18] has been developed.
YATG has been designed to poll SNMP counters very fast and
thus produce bandwidth utilization plots with a fine time
resolution.

It has been implemented as a multi-process, multi-threaded
application. Multi-processing is used to simultaneously poll the

ports that have been selected for analysis. Within each process
there are two threads. One will loop on issuing an SNMP
request to the port in question and then posting the subsequent
request upon reception of the response. It is therefore running
at the capacity of the port, without saturating the process CPU
just waiting for the responses. The second thread is a timer
process that sets the bound of the total sampling time. When
the polling thread is terminated by the timing thread, the
package generates the traffic plots for the selected ports.

This method was shown to be the most effective for
obtaining the best results from any given switch and rates of up
to 100Hz per port have been obtained. However it also
exposed a problem with SNMP messaging in general.
Although the counters in the switches are being maintained at
hardware speeds, the SNMP server that reads them runs on the
management CPU of the device. It is usually allocated a fairly
low priority in order to free the CPU for time-critical
operational tasks. Attempts were made to reduce the SNMP
rate by making a single grouped request instead of a request
per port. In this case however, the server will usually truncate
the response to what can be fitted into a single Ethernet frame.
Although some switches can respond at up to 100Hz, for
others the figure is as low as 1Hz and the worst was measured
at 0.2Hz. This response time represents the limiting factor for
SNMP based monitoring. To achieve higher speeds, methods
closer to the hardware need to be employed (see Section VII-
B).

V. STATUS VISUALIZATION
Gathering the relevant statistics and status of a system is

only part of a much larger problem: deciding which
information is needed by different users and in what form it is
to be presented. At one extreme, detailed knowledge of which
ports or devices are reporting chronic or sporadic failures is
needed for maintenance purposes. However, global views of
traffic overloads and lost packets are needed by system
analysts to determine if load sharing is working properly or if
the data-taking processes themselves are overloading the
system. Operators merely need to know that all or most of the
system is working within design limits.

With over 4K ports being monitored over four separate
networks and many processing devices connected
simultaneously to two or three of those networks, there is a real
concern that visualizing any of the data in detail on health,
throughput or errors is only possible for limited parts of the
system which means that the global view of what is happening
at a system wide level would be lost.

The commercial tools that address this typically display a
hierarchical 2D representation of the network with color coded
status information at every level. However, as the network size
increases they are forced to create ever deeper levels of
hierarchy just to keep the display on one screen. This makes
navigation extremely cumbersome. Devices such as those in Fig. 4. sFlow monitoring.

the TDAQ installation, with multiple network connections
make it even more difficult to create a readable display. What
is needed is a tool that will allow for varying levels of detail to
be visible as a function of the chosen point of view. Seeing the
whole TDAQ network displayed in this manner would just not
be possible at any meaningful level of detail.

The chosen approach was to benefit from recent advances in
3D flythrough visualization software that allows rapid and
smooth scaling from the very large to the very small with
enhanced operator control of the 3D scene. X3D [19], an
emerging ISO standard for real-time 3D visualization, was
adopted since it is flexible and powerful enough to fulfill the
demanding requirements of this large scale visualization
system.

A hierarchical 3D prototype of the network has been
developed with two layers of abstraction. The top layer which
offers the overall picture of the network at a glance is made of
two types of containers: processor farms and core switches.
Fig.5 shows a screen shot of the prototype top layer. The
bottom layer offers more detailed information about particular
devices and is made up of processors and switches grouped by
functionality as shown in Fig. 6.

Using a static 3D model of the network installation authored
in 3D Studio Max [20] as input and the X3D prototypes for
primitives (such as panels, processors, switches), the X3D
description of the top-level containers with their
interconnections was generated. The hierarchy of objects that
need to be visualized and some relevant characteristics of each
object or object group such as, for example, the object type
(processor, switch) are stored in a small-scale MySQL [21]
database. The application uses the MySQL data and the X3D

prototypes to populate the top-level containers at initialization
time. It also performs the automated placement of the
components inside the container thus relying only on the
container coordinates and on a set of placement rules and
dimension parameters. Adding the real-time variables to the
scene is done using the standard Scene Access Interface (SAI)
[19]. This allows the application to modify object attribute
values as a function of the status information obtained by
mining the relevant data from the different databases.

Both top and bottom level components carry virtual ‘status
lights’ which show the aggregate health status of the
component and traffic and error information panels which
reveal input and output throughput colored according to
predetermined thresholds. Errors that exceed critical thresholds
propagate upwards so as to be visible from the top-level
containers. Thus a view of the whole system will reveal where
potential concerns exist and the operator can ‘fly in’ for a
closer look at the cause and scale of the problem.

In addition to the SAI which offers the real-time
visualization capabilities, X3D offers other important features
related to scalability and performance. Levels of detail can
change as a function of the distance of the viewpoint. This
limits what needs to be drawn for any given scene. Proximity
sensors allow the control of navigation speed depending on the
position of the viewpoint and are used to decrease speed when
navigating inside containers.

Time sensors control the status refresh rate and allow
concurrent refresh of the status information. X3D Proto
structures allow the creation of user-defined object types, each
with its own set of attributes which can be accessed externally.
Using this feature, the primitives and their dynamic attributes –
such as color and description text – were defined and this
almost eliminated redundant X3D descriptions, reducing the
X3D files size from tens of MB to hundreds of KB.

The application is currently using the Xj3D toolkit [22]
comprised of a Java-based 3D viewer and an open source
implementation of the Scene Access Interface. The Xj3D
toolkit, which relies on the OpenGL [23] 3D rendering engine,
is used as a testing ground for the developers of the X3D
standard and is still in its initial stages. Although sustained Fig. 5. Top-level network view.

Fig. 6. Close-up view of processor farms.

efforts are made for its improvement, the toolkit focuses
mainly on proving that the newly developed X3D features can
be implemented rather than on performance and scalability. For
this reason it is foreseen to migrate to a commercial toolkit in
the near future.

VI. REPORTING SYSTEM INFORMATION
The system information gathered by Spectrum (see Section

IV-A) is required not just for visualization but also for other
consumers such as run control and error reporting. Fig. 7
shows the data flow from the monitoring system to the end
users. The basic status and health of the system is made
available to the Network Initial Panel in the operator GUI
(Graphical User Interface) of the Online Software3. All the
network related alarm messages are displayed on this panel for
the operator’s attention, and also made available through the
Error Reporting System (ERS). When a run partition4 is
spawned, there is a Network Partition panel spawned with it.
The default is for this to also run a check to see if the resources
required by the partition, i.e. processors and their connectivity,
are available. The Services Manager maintains an up-to-date
copy of the currently available resources detected by the
SpectroServer to be used for a fast cross check with the
requirements held in the Configuration Database (ConfigDB5).

Once the partition is running, all the alarms that are relevant
to that partition are directed to the network partition panel.
SSLogger runs the network traffic statistics collection. The
resulting plots are published to a web interface which can be
read from anywhere including the Network Panels. The
OneClick Spectrum console offers 2D connectivity and status
display and can be accessed by the network administrator for
advanced troubleshooting.

The Services Manager also handles the statistics produced
by the Report Gateway and compiles tables of the individual
port statistics as well as the aggregate values and the threshold
comparisons used by the Status Visualisation program (see
Section V) to produce the 3D status. The link to the Detector
Control System (DCS) via the information services (IS) is used
to correlate switch or network failure with the status of power
in the relevant racks so that the appropriate alarm message may
be generated.

VII. TARGETED DIAGNOSTICS
The monitoring so far described is essentially reactive, status

evolves and monitoring hopefully keeps up with the changes.
However the sampling methods used are orders of magnitude
slower than the typical packet transit time from detector to
processing node. More specific tools are needed to calibrate

3 The Online Software is the term used to denote the framework that
controls the ATLAS TDAQ system.

4 The term partition denotes the subset of TDAQ components used for a
particular run.

5 The ConfigDB stores the information required for configuring and running
a partition.

and monitor particular connections or network areas that are
shown to be causing problems by the general monitoring
system. Data transmission problems can be due to material
failure or, more often, to inadequate available bandwidth for
the instantaneous load. This can be caused by asymmetric data
distribution patterns or inappropriate traffic patterns caused by
poor flow control between applications. It is not possible to
increase the sampling rate of SNMP messages because of the
switch CPU restrictions already mentioned in Section IV-C.
Different approaches are required to gather system data that are
more limited in scope but capable of greater resolution.

A. Measuring achievable bandwidth
A tool has been developed to emulate the data acquisition

traffic flow, which is characterized by request-response
transactions. Physics events are stored in detector buffers and
are retrieved on demand by the processing nodes [24]. The
traffic pattern has a "funnel" shape: as the event data is
scattered among a large number of detector buffers, each
processing node (a client) receives data simultaneously from
many sources (the servers). In order to regulate the data rates, a
traffic shaping mechanism is employed [25].

The tool can be used to validate the network, not just in the
sense that all nodes have the necessary inter-connectivity, but
also that there is enough capacity to deliver the bandwidth
required for a given TDAQ configuration. It emulates the
behavior of DAQ applications for what concerns the use of the
network, but does not depend on the entire DAQ control
infrastructure to operate.

The tool can be used to find the upper bounds in terms of
transaction rates supported by a given combination of network
and computers. It can also be used to measure the maximum
queue depths in switches. Thus, it is possible to cross-check
that buffer management configurations are correctly reflected
in the hardware.

Fig. 7. Monitoring and reporting.

B. Measuring queue occupancy development
Resource management in any switch is a proprietary issue.

Some manufacturers will have a freely allocatable pool of
shared memory, some will allocate memory on a per-port basis
and yet others will permit a degree of user programmability in
the way that memory is allocated. It has also been observed
that manufacturers may change their memory allocation
models from one firmware release to the next. Depending on
the conditions in force at any moment, any oversubscribed
egress port may, sooner or later, run out of available memory
and the overflow packets will be discarded with negative
consequences for the parent application.

As previously mentioned, it is possible to measure the
physical memory allocation by precisely directing known
traffic distributions through a target switch. This is not enough
however to judge to what extent the memory is sufficient for
long-term error free operation. The actual flow to any given
port will have some distribution as a function of trigger
conditions and physics data flow management. This could
possibly lead to bursts of oversubscription with enough
duration and rate to overflow the available buffers. Profiling
the queue occupancy will show how well the infrastructure
copes with the reality of the load and, if needed, will indicate
how load balancing can be optimized. However, slow polling
will never reveal the details of queue occupancy. Typical
buffer sizes are of the order of 103 to 104 frames for full size
frames. At 10 Gbit/s, such a buffer can overflow in less than a
millisecond so the sampling rate needs to be of the order of
tens of microseconds. We implemented a system able to
achieve such high rates.

The firmware of a pair of FPGA6 based network interface
cards, the GETB [26], has been modified to transmit and
receive time-stamped probe packets. In this way, latency
between two points of the network can be measured with very
fine granularity, based on the transmission and reception time-
stamps from the probe packets. For known frame sizes the
latency is proportional to the queue occupancy. Note that the
measurement method is inherently intrusive. A standard
measurement scenario is shown in Fig. 8.

A typical hot spot may be the egress port of a “core” switch
where data samples from multiple sources are concentrated
together and forwarded to an “edge” switch. By injecting probe
packets into the core switch and receiving them from a spare
port on the edge switch, we can dynamically monitor the
instantaneous queue occupancy at the egress port. This
sampling can be done at very high rates (1.488 MHz for 64
byte probe packets).

VIII. STATUS AND FUTURE PLANS
Operating, monitoring and maintaining this large network is

accomplished using a set of tools that cover different needs.
The database consistency checking application has been

released and tested on the MTF and Rack Wizard databases.
Network configuration is currently done by scripting and open
source management tools are being studied. Spectrum, YATG
and sFlow monitoring have all been tested as first releases. The
bandwidth measuring application has been deployed in
prototype form as has the GETB prototype for measuring
queue development. The 3D status visualization package is in
development.

Further work is planned with a view to ensuring that the
tools described in this paper reach production maturity, and
can be seamlessly integrated in the operation of the TDAQ
system. Furthermore, the network monitoring data obtained
will assist in the detection and diagnosis of wider system
performance issues.

REFERENCES
[1] M. Ciobotaru, L. Leahu, B. Martin, C. Meirosu, S. Stancu, “ Networks for

ATLAS trigger and data acquisition”, in Proc. Computing in High Energy
Physics (CHEP 06), Mumbai, India, Feb. 2006.

[2] B. Martin, E. Panikashvili, “Design tools for large networks”, in Proc.
IEEE Real Time 2007 Conference, Batavia, Illinois, 2007, p. (to appear).

[3] C. Delamare, A. Jimeno, S. Mallón Amérigo, E. Manola-Poggioli, P.
Martel, B. Rousseau, D.Widegren, “Manufacturing and test folder:MTF”,
in Proc. EPAC 2002, Paris, France, 2002.

[4] F. Glege, “The Rack Wizard, a graphical database interface for
electronics configuration”, in Proc. 9th Workshop on Electronics for LHC
Experiments proceedings, Amsterdam, Holland, Oct. 2003.

[5] The CERN IT/CS Network Services. [Online]. Available: https:
//network.cern.ch/

[6] M. Hatch, “Cabling of the ATLAS experiment”, in Proc 9th Workshop on
Electronics for LHC Experiments, Amsterdam, Holland, Oct. 2003.

[7] Java SE - Java Database Connectivity (JDBC). [Online]. Available:
http://java.sun.com/javase/technologies/database/

[8] Simple Object Access Protocol. [Online]. Available: http://www.w3.org/
TR/soap/

6 Field Programmable Gate Array.

Fig. 8. Measuring queue latency.

[9] Common Object Request Broker Architecture. [Online]. Available:
http://www.corba.org/

[10] JavaServer Pages. [Online]. Available: http://java.sun.com/products/
jsp/index.jsp

[11] ZipTie, an Open Source framework for Network Inventory Management.
[Online]. Available: http://www.ziptie.org

[12] Python Programming Language – Official Website. [Online]. Available:
http://www.python.org/

[13] R. Enns, Ed., “NETCONF Configuration Protocol”, RFC 4741, Dec.
2006

[14] C. Lonvick, “The BSD syslog Protocol”, RFC 3164, Aug. 2001.
[15] SPECTRUM® Network Root Cause Analysis & Performance

Management Software. [Online]. Available: http://www.aprisma.com
[16] T. Oetiker, RRDtool. [Online]. Available: http://oss.oetiker.ch/ rrdtool/
[17] P.Phaal, S. Panchen, N.McKee, “InMon Corporation's sFlow: A Method

for Monitoring Traffic in Switched and Routed Networks”, RFC 3176,
Sept. 2001.

[18] A. Al-Shabibi, C. Meirosu, S. Stancu, A. Topurov, “YATG: Yet Another
Traffic Grapher”, [Online]. Available: https://edms.cern.ch/file/839606/
1/Yatg_Arch_Desc.pdf

[19] Extensible 3D (X3D), ISO/IEC Std. 19775, 2004. [Online]. Available:
http://www.web3d.org/x3d/specifications/

[20] Autodesk 3ds Max. [Online]. Available: www.autodesk.com/3dsmax
[21] MySQL database. [Online]. Available: http://www.mysql.com/
[22] The Xj3D Project [Online]. Available:http://www.xj3d.org/
[23] M. Segal, K. Akeley, “The OpenGL Graphics System: A Specification”

[Online]. Available: http://www.opengl.org/registry/doc/glspec21.
20061201.pdf.

[24] H.P. Beck et al,, “High-Level Description of the Flow of Control and
Data Messages for the ATLAS TDAQ Integrated Prototypes”, [Online].
Available: https://edms.cern.ch/file/391514/1.0/DC-012.pdf

[25] Christian Haeberli, “The ATLAS TDAQ DataCollection Software”, PhD
thesis, University of Bern, "Traffic Shaping" Section 9.3.5, page 53.
[Online].Available: http://doc.cern.ch/archive/electronic/cern/preprints/
thesis/thesis-2005-028.pdf

[26] M. Ciobotaru, M. LeVine, B. Martin, S. N. Stancu, “GETB, a Gigabit
Ethernet Application Platform: its Use in the ATLAS TDAQ Network” in
Proc IEEE Real Time 2005 Conference, Stockholm, Sweden, Jun. 2005

