
 

Abstract—The ATLAS TDAQ network consists of four separate 
Ethernet based networks which together total over 4000 ports 
with 200 edge switches and 6 multi-blade chassis switches at the 
core. System checks are invoked at every level of the installation. 
The full installation is described in different static databases. 
Tools are provided to automatically cross-check these for 
consistency. The configuration management is centralized: 
configuration files stored in a database are distributed to all 
devices and the actual settings are periodically verified. 
Monitoring systems are deployed to validate the connectivity, 
identify malfunctions and confirm the resources availability upon 
request from TDAQ control. Relevant operational statistics (e.g. 
port status and throughput) are continuously logged and made 
available to TDAQ control. Watches and alarms are set for 
dynamic threshold violations and the complete instantaneous 
status can be viewed at different levels of abstraction in a 3D fly-
through. A tool-set has been developed to demonstrate aggregate 
achievable cross-sectional bandwidth for TDAQ-specific traffic 
profiles, as well as to analyze traffic flows and hot spot behaviour. 

I. INTRODUCTION 

T he architecture of the ATLAS TDAQ networks has 
already been described in [1] and the first stage of the 
installation has been functioning since autumn 2006. A set of 
tools and support procedures are being put in place to ensure 
that the installation is consistently described, that all the 
elements are functional, and that failures are rapidly diagnosed, 
to minimize any potential down time. Statistics are gathered in 
real time to indicate the performance of the network, to assist 
in system analysis and to provide reliable status information to 
the experiment’s run control. Status information is displayed in 
both 2D and 3D form. Specific tools have been developed to 
probe the behaviour of targeted portions of the network and 
determine realistic achievable throughput.  

II. CROSS CHECKING INSTALLATION DATABASES 
The installation is described graphically using NetDesign 

[2], a Microsoft Visio® based drawing package. The physical 
elements such as switches and processors are described in two 

separate databases. The ownership, serial numbers and 
maintenance contacts are stored in the MTF database [3], while 
their geographical location is stored in Rack Wizard [4]. In 
addition, all network connected devices have their service 
settings described in the LANDB database [5], and cables are 
described in the cable database [6]. 

Each of these databases has its own data access interface and 
is maintained by many different people, each with their own 
particular focus. It is therefore likely that there will be 
omissions and errors at the time the data is first entered. Even 
if extensive cross checking is done there will inevitably be a 
divergence over time as material is moved, repaired or 
modified and only a sub-set (if any) of the relevant databases is 
updated. To avoid this, and ensure that the data across the 
various databases is consistent at all times, a tool has been 
developed to automatically cross check all these static 
databases. 

Fig. 1 illustrates the block diagram of the database 
consistency check application. It is written in Java, mainly to 
take advantage of the supported interfaces, such as Java 
Database Connectivity (JDBC) [7] API, Simple Object Access 
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Fig. 1.  Database consistency checking. 



 

Protocol (SOAP) [8] API, and the Common Object Request 
Broker Architecture (CORBA®) [9] API, required by the 
proliferation of different database access requirements. 

To allow for an easy extension of the application to cover 
other databases, or additional clients, the data processing core 
is clearly separated from the data access components and the 
client Web components that use JavaServer Pages (JSP) [10] 
technology. 

Consistency checks operate by cycling through records in 
each database and using common key properties to identify the 
corresponding records in the other databases. This is done for 
each database in turn. The common key between LANDB and 
MTF is the MAC address of the device, while between MTF 
and Rack wizard it is the PartID. In this way, records in one 
database that have no corresponding records in the others, or 
for which the corresponding records have inconsistencies such 
as different names, can all be identified. Once the Spectrum1 
server is fully functional it is intended to add a CORBA 
interface to it to check if all the objects discovered by 
Spectrum have corresponding entries in the static databases. 
Work to incorporate the NetDesign database check is also 
foreseen. 

The consistency check can be run manually, for example 
after updating the databases to ensure that all relevant entries 
have been completely registered, or automatically at regular 
intervals as a background check. 

III. NETWORK CONFIGURATION 
The scale of the networks deployed in the TDAQ system 

(order of 200 managed devices) calls by itself for the 
automation of the configuration task. Not only is the system 
large, but its gradual deployment will impose the need to 
simultaneously manage different flavours of equipment and/or 
software versions. Currently there are several commercial 
solutions for network configuration management (NCM), 
offering an extensive set of features. Since only a reduced sub-
set of these features is essential for the particular case of 
configuring the TDAQ networks, the cost of deploying 
commercial software cannot be justified. The complexity of the 
configuration management task is significantly reduced by the 
“static” nature of the TDAQ networks configuration. Once 
installed, the configuration of a certain device does not need to 
change “on the fly”. Regular upgrades and changes are 
performed during foreseen maintenance periods. Thus the 
ability to perform dynamic changes on the network 
configuration is a desirable feature, but not a “must” for the 
NCM system. The emerging open source utilities for 
configuration management [11] appear as a promising 
alternative for this purpose in the close future. 

Currently a set of custom Python [12] scripts is used for 
configuring the network devices. Since this approach is 

 
1 Spectrum is the software package deployed for network health monitoring 

(see Section IV-A). 

unlikely to scale as the system grows, we plan for a coherent 
architecture for network configuration management (see Fig.2). 
A database is used to store the inventory of all the devices in 
the network (and eventually topology information), including 
repositories for device configuration files and firmware 
images.  

The Front-End and Configuration Engine (FCE) provides 
the network administrator with a representation of the network 
(based on information from the database), and manages the 
three essential management operations together with the 
appropriate logging facilities. 

A. Applying configuration commands 
A Common Configuration interface (CCI) enables 

performing regular configuration tasks (e.g. enabling or 
disabling ports, configuring VLAN membership) using the 
same “language”, regardless of the device type and 
manufacturer. This language should be scriptable, i.e. allow the 
user to apply a sequence of configuration actions to a desired 
set of devices. The CCI implementation translates the common 
“language” into configuration actions specific to each device 
through NETCONF [13] (if available), SNMP (Simple 
Network Management Protocol) and ultimately through the 
command line interface (CLI).  

In order to provide full flexibility, the FCE allows the 
operator to bypass the CCI and directly perform changes on the 
device (through the CLI or SNMP). 

B. Configuration file management 
Based on the information from the network representation 

databases, the FCE should be able to make snapshots of the 
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configuration files for all the devices, either at pre-configured 
intervals or on demand. These snapshots can be stored in the 
Config Repository of the database, and the FCE should be able 
to “push” a known revision from the database onto the network 
devices. Configuration files can be uploaded to or downloaded 
from network devices using a file transfer protocol, like TFTP 
(Trivial File Transfer Protocol).  

C. Firmware management  
An approach similar to the one for the configuration file 

management is taken. Most of the devices support booting 
from two memory locations (primary and secondary). The 
firmware (FW) upgrade policy should make sure that one of 
the boot flashes contains the “last validated FW version”, 
while the other one receives the upgraded version. 

D. Logging System 
A coherent logging system is important for troubleshooting 

and understanding the sequence of occurrence of certain 
events. Thus, devices must have their clocks synchronized 
using the Network Time Protocol (NTP), and make use of a 
common syslog [14] server. 

IV. NETWORK MONITORING 

A. Spectrum 
Spectrum [15] is the commercial network monitoring 

package employed, and provides various services, e.g. polling, 
alarm notification and data archiving. Its main tasks are to 
maintain a model of the full network in its core application, 
called the SpectroServer, and to constantly poll the network 
devices for information using SNMP. Spectrum is based on a 
client-server architecture, where the server is the SpectroServer 
and the clients are independent applications that connect to the 
server and are provided access to the data in the SpectroServer 
knowledge base. The OneClick Console is a client application 
used for visualizing the status of the network in a 2D layout. 
For example, Fig. 3 depicts a snapshot of a TDAQ data 
network, where all devices but one are working properly.  

The concept that Spectrum relies on when building and 
updating its knowledge base is the model. Every network 
device, component, and application is represented as a model 
inside the SpectroServer. Keeping an up-to-date representation 
of the network is the task of the SpectroServer. This can be 
done synchronously, with SNMP requests being issued at five 
minute intervals, or asynchronously when it is notified by the 
network device itself of relevant events via the trap 
mechanism2. It is also possible for SpectroServer to change a 
writeable value in a device’s Management Information Base 
(MIB) using the same protocol, SNMP. It is worth mentioning 
that the acquired version of Spectrum offers SNMP support for 
authentication, encryption and 64-bit counters. The last 

 
2 When detecting abnormal conditions, the SNMP agent on the device can 

issue asynchronous alerts (SNMP traps). 

capability is important when monitoring interfaces with high 
speed links because it reduces the problems caused by a too 
rapid cycling and wrap around of the relevant counters.  

One important role of Spectrum is to provide network 
specialists with the quickest possible way to detect, isolate and 
resolve problems. When a network problem is detected or 
reported by a device via an SNMP trap, the SpectroServer can 
generate an alarm for the model or models involved. In the 
event of multiple simultaneous error conditions, Spectrum will 
correlate them and derive the root cause of the failure, then 
issue an alarm for just that device. 

Spectrum offers custom application access to the 
SpectroServer data via a CORBA based API. Using this 
mechanism, useful network information can be published to 
the TDAQ control applications or any other software that 
requests it.  

Traffic statistics are needed for performance monitoring at 
the highest practicable rate. Even at low rates, maintaining 
these statistics in the knowledge database would rapidly 
overrun the storage capacity and so a different approach is 
needed. The SSLogger client program is used to request traffic 
statistics from each node and to update the received statistics in 
raw data files (plain text). These are updated every 30 seconds 
and then added to a Round Robin Database [16]. This limits 
the maximum storage requirements, but also the length of time 
the data can be stored. With the current settings this is of the 
order of one week for all the monitored ports at maximum time 
resolution. 

B. sFlow 
The SNMP statistics provided by Spectrum offer an 

aggregate view on the traffic levels in various places of the 
network. Average link occupancies can be measured, but 
SNMP does not provide any information on where this traffic 
is moving from or to, or what type of packets make up the 

Fig. 3.  2D network visualization. 



 

flow. When troubleshooting network congestion issues or just 
for simple health monitoring, it is often useful to know the 
contents of the data streams in more detail. For the TDAQ 
network it is intended to use sFlow [17] for this purpose. sFlow 
is a technology based on statistical sampling. Packet descriptor 
samples are saved by network switches and submitted to a 
central collector. The samples are then analyzed by the 
collector and traffic characteristics are inferred. A simple 
collector and analysis package has been developed to explore 
this technology. Its most important feature is the ability to 
identify network conversations, i.e. packet exchanges between 
pairs of source and destination IP or MAC addresses. 
Conversations can further be classified based on UDP/TCP 
port numbers if necessary. For each port in the network, a 
histogram of the per-conversation traffic is produced.  

Having the traffic profile for each switch port, pie-charts as 
shown in Fig. 4, and traffic matrices can be generated. The 
"top-users" of a link as well as any abnormal traffic patterns 
can be immediately detected. 

The package is implemented in Python and this facilitates 
any future functional extensions or integration with other 
applications. For example, one possible direction for future 
work is to use the TDAQ specific protocol headers to classify 
the traffic.  

 

C. High-speed SNMP monitoring 
For specific monitoring requiring high sampling rate (i.e. a 

few problematic ports of the network), the YATG (Yet 
Another Traffic Grapher) package [18] has been developed. 
YATG has been designed to poll SNMP counters very fast and 
thus produce bandwidth utilization plots with a fine time 
resolution. 

It has been implemented as a multi-process, multi-threaded 
application. Multi-processing is used to simultaneously poll the 

ports that have been selected for analysis. Within each process 
there are two threads. One will loop on issuing an SNMP 
request to the port in question and then posting the subsequent 
request upon reception of the response. It is therefore running 
at the capacity of the port, without saturating the process CPU 
just waiting for the responses. The second thread is a timer 
process that sets the bound of the total sampling time. When 
the polling thread is terminated by the timing thread, the 
package generates the traffic plots for the selected ports. 

This method was shown to be the most effective for 
obtaining the best results from any given switch and rates of up 
to 100Hz per port have been obtained. However it also 
exposed a problem with SNMP messaging in general. 
Although the counters in the switches are being maintained at 
hardware speeds, the SNMP server that reads them runs on the 
management CPU of the device. It is usually allocated a fairly 
low priority in order to free the CPU for time-critical 
operational tasks. Attempts were made to reduce the SNMP 
rate by making a single grouped request instead of a request 
per port. In this case however, the server will usually truncate 
the response to what can be fitted into a single Ethernet frame. 
Although some switches can respond at up to 100Hz, for 
others the figure is as low as 1Hz and the worst was measured 
at 0.2Hz. This response time represents the limiting factor for 
SNMP based monitoring. To achieve higher speeds, methods 
closer to the hardware need to be employed (see Section VII-
B).  

V.  STATUS VISUALIZATION 
Gathering the relevant statistics and status of a system is 

only part of a much larger problem: deciding which 
information is needed by different users and in what form it is 
to be presented. At one extreme, detailed knowledge of which 
ports or devices are reporting chronic or sporadic failures is 
needed for maintenance purposes. However, global views of 
traffic overloads and lost packets are needed by system 
analysts to determine if load sharing is working properly or if 
the data-taking processes themselves are overloading the 
system. Operators merely need to know that all or most of the 
system is working within design limits.  

With over 4K ports being monitored over four separate 
networks and many processing devices connected 
simultaneously to two or three of those networks, there is a real 
concern that visualizing any of the data in detail on health, 
throughput or errors is only possible for limited parts of the 
system which means that the global view of what is happening 
at a system wide level would be lost.  

The commercial tools that address this typically display a 
hierarchical 2D representation of the network with color coded 
status information at every level. However, as the network size 
increases they are forced to create ever deeper levels of 
hierarchy just to keep the display on one screen. This makes 
navigation extremely cumbersome. Devices such as those in Fig. 4.  sFlow monitoring. 



 

the TDAQ installation, with multiple network connections 
make it even more difficult to create a readable display. What 
is needed is a tool that will allow for varying levels of detail to 
be visible as a function of the chosen point of view. Seeing the 
whole TDAQ network displayed in this manner would just not 
be possible at any meaningful level of detail. 

The chosen approach was to benefit from recent advances in 
3D flythrough visualization software that allows rapid and 
smooth scaling from the very large to the very small with 
enhanced operator control of the 3D scene. X3D [19], an 
emerging ISO standard for real-time 3D visualization, was 
adopted since it is flexible and powerful enough to fulfill the 
demanding requirements of this large scale visualization 
system.  

A hierarchical 3D prototype of the network has been 
developed with two layers of abstraction. The top layer which 
offers the overall picture of the network at a glance is made of 
two types of containers: processor farms and core switches. 
Fig.5 shows a screen shot of the prototype top layer. The 
bottom layer offers more detailed information about particular 
devices and is made up of processors and switches grouped by 
functionality as shown in Fig. 6. 

Using a static 3D model of the network installation authored 
in 3D Studio Max [20] as input and the X3D prototypes for 
primitives (such as panels, processors, switches), the X3D 
description of the top-level containers with their 
interconnections was generated. The hierarchy of objects that 
need to be visualized and some relevant characteristics of each 
object or object group such as, for example, the object type 
(processor, switch) are stored in a small-scale MySQL [21] 
database. The application uses the MySQL data and the X3D 

prototypes to populate the top-level containers at initialization 
time. It also performs the automated placement of the 
components inside the container thus relying only on the 
container coordinates and on a set of placement rules and 
dimension parameters. Adding the real-time variables to the 
scene is done using the standard Scene Access Interface (SAI) 
[19]. This allows the application to modify object attribute 
values as a function of the status information obtained by 
mining the relevant data from the different databases. 

Both top and bottom level components carry virtual ‘status 
lights’ which show the aggregate health status of the 
component and traffic and error information panels which 
reveal input and output throughput colored according to 
predetermined thresholds. Errors that exceed critical thresholds 
propagate upwards so as to be visible from the top-level 
containers. Thus a view of the whole system will reveal where 
potential concerns exist and the operator can ‘fly in’ for a 
closer look at the cause and scale of the problem. 

In addition to the SAI which offers the real-time 
visualization capabilities, X3D offers other important features 
related to scalability and performance. Levels of detail can 
change as a function of the distance of the viewpoint. This 
limits what needs to be drawn for any given scene. Proximity 
sensors allow the control of navigation speed depending on the 
position of the viewpoint and are used to decrease speed when 
navigating inside containers. 

Time sensors control the status refresh rate and allow 
concurrent refresh of the status information. X3D Proto 
structures allow the creation of user-defined object types, each 
with its own set of attributes which can be accessed externally. 
Using this feature, the primitives and their dynamic attributes – 
such as color and description text – were defined and this 
almost eliminated redundant X3D descriptions, reducing the 
X3D files size from tens of MB to hundreds of KB. 

The application is currently using the Xj3D toolkit [22] 
comprised of a Java-based 3D viewer and an open source 
implementation of the Scene Access Interface. The Xj3D 
toolkit, which relies on the OpenGL [23] 3D rendering engine, 
is used as a testing ground for the developers of the X3D 
standard and is still in its initial stages. Although sustained Fig. 5.  Top-level network view. 

Fig. 6.  Close-up view of processor farms. 



 

efforts are made for its improvement, the toolkit focuses 
mainly on proving that the newly developed X3D features can 
be implemented rather than on performance and scalability. For 
this reason it is foreseen to migrate to a commercial toolkit in 
the near future. 

VI. REPORTING SYSTEM INFORMATION 
The system information gathered by Spectrum (see Section 

IV-A) is required not just for visualization but also for other 
consumers such as run control and error reporting. Fig. 7 
shows the data flow from the monitoring system to the end 
users. The basic status and health of the system is made 
available to the Network Initial Panel in the operator GUI 
(Graphical User Interface) of the Online Software3. All the 
network related alarm messages are displayed on this panel for 
the operator’s attention, and also made available through the 
Error Reporting System (ERS). When a run partition4 is 
spawned, there is a Network Partition panel spawned with it. 
The default is for this to also run a check to see if the resources 
required by the partition, i.e. processors and their connectivity, 
are available. The Services Manager maintains an up-to-date 
copy of the currently available resources detected by the 
SpectroServer to be used for a fast cross check with the 
requirements held in the Configuration Database (ConfigDB5). 

Once the partition is running, all the alarms that are relevant 
to that partition are directed to the network partition panel. 
SSLogger runs the network traffic statistics collection. The 
resulting plots are published to a web interface which can be 
read from anywhere including the Network Panels. The 
OneClick Spectrum console offers 2D connectivity and status 
display and can be accessed by the network administrator for 
advanced troubleshooting.  

The Services Manager also handles the statistics produced 
by the Report Gateway and compiles tables of the individual 
port statistics as well as the aggregate values and the threshold 
comparisons used by the Status Visualisation program (see 
Section V) to produce the 3D status. The link to the Detector 
Control System (DCS) via the information services (IS) is used 
to correlate switch or network failure with the status of power 
in the relevant racks so that the appropriate alarm message may 
be generated. 

VII. TARGETED DIAGNOSTICS 
The monitoring so far described is essentially reactive, status 

evolves and monitoring hopefully keeps up with the changes. 
However the sampling methods used are orders of magnitude 
slower than the typical packet transit time from detector to 
processing node. More specific tools are needed to calibrate 
 

3 The Online Software is the term used to denote the framework that 
controls the ATLAS TDAQ system. 

4 The term partition denotes the subset of TDAQ components used for a 
particular run. 

5 The ConfigDB stores the information required for configuring and running 
a partition. 

and monitor particular connections or network areas that are 
shown to be causing problems by the general monitoring 
system. Data transmission problems can be due to material 
failure or, more often, to inadequate available bandwidth for 
the instantaneous load. This can be caused by asymmetric data 
distribution patterns or inappropriate traffic patterns caused by 
poor flow control between applications. It is not possible to 
increase the sampling rate of SNMP messages because of the 
switch CPU restrictions already mentioned in Section IV-C. 
Different approaches are required to gather system data that are 
more limited in scope but capable of greater resolution. 

A. Measuring achievable bandwidth 
A tool has been developed to emulate the data acquisition 

traffic flow, which is characterized by request-response 
transactions. Physics events are stored in detector buffers and 
are retrieved on demand by the processing nodes [24]. The 
traffic pattern has a "funnel" shape: as the event data is 
scattered among a large number of detector buffers, each 
processing node (a client) receives data simultaneously from 
many sources (the servers). In order to regulate the data rates, a 
traffic shaping mechanism is employed [25].  

The tool can be used to validate the network, not just in the 
sense that all nodes have the necessary inter-connectivity, but 
also that there is enough capacity to deliver the bandwidth 
required for a given TDAQ configuration. It emulates the 
behavior of DAQ applications for what concerns the use of the 
network, but does not depend on the entire DAQ control 
infrastructure to operate.  

The tool can be used to find the upper bounds in terms of 
transaction rates supported by a given combination of network 
and computers. It can also be used to measure the maximum 
queue depths in switches. Thus, it is possible to cross-check 
that buffer management configurations are correctly reflected 
in the hardware. 

Fig. 7.  Monitoring and reporting. 



 

B. Measuring queue occupancy development 
Resource management in any switch is a proprietary issue. 

Some manufacturers will have a freely allocatable pool of 
shared memory, some will allocate memory on a per-port basis 
and yet others will permit a degree of user programmability in 
the way that memory is allocated. It has also been observed 
that manufacturers may change their memory allocation 
models from one firmware release to the next. Depending on 
the conditions in force at any moment, any oversubscribed 
egress port may, sooner or later, run out of available memory 
and the overflow packets will be discarded with negative 
consequences for the parent application. 

As previously mentioned, it is possible to measure the 
physical memory allocation by precisely directing known 
traffic distributions through a target switch. This is not enough 
however to judge to what extent the memory is sufficient for 
long-term error free operation. The actual flow to any given 
port will have some distribution as a function of trigger 
conditions and physics data flow management. This could 
possibly lead to bursts of oversubscription with enough 
duration and rate to overflow the available buffers. Profiling 
the queue occupancy will show how well the infrastructure 
copes with the reality of the load and, if needed, will indicate 
how load balancing can be optimized. However, slow polling 
will never reveal the details of queue occupancy. Typical 
buffer sizes are of the order of 103 to 104 frames for full size 
frames. At 10 Gbit/s, such a buffer can overflow in less than a 
millisecond so the sampling rate needs to be of the order of 
tens of microseconds. We implemented a system able to 
achieve such high rates. 

The firmware of a pair of FPGA6 based network interface 
cards, the GETB [26], has been modified to transmit and 
receive time-stamped probe packets. In this way, latency 
between two points of the network can be measured with very 
fine granularity, based on the transmission and reception time-
stamps from the probe packets. For known frame sizes the 
latency is proportional to the queue occupancy. Note that the 
measurement method is inherently intrusive. A standard 
measurement scenario is shown in Fig. 8. 

A typical hot spot may be the egress port of a “core” switch 
where data samples from multiple sources are concentrated 
together and forwarded to an “edge” switch. By injecting probe 
packets into the core switch and receiving them from a spare 
port on the edge switch, we can dynamically monitor the 
instantaneous queue occupancy at the egress port. This 
sampling can be done at very high rates (1.488 MHz for 64 
byte probe packets).  

VIII. STATUS AND FUTURE PLANS 
Operating, monitoring and maintaining this large network is 

accomplished using a set of tools that cover different needs. 
The database consistency checking application has been 

released and tested on the MTF and Rack Wizard databases. 
Network configuration is currently done by scripting and open 
source management tools are being studied. Spectrum, YATG 
and sFlow monitoring have all been tested as first releases. The 
bandwidth measuring application has been deployed in 
prototype form as has the GETB prototype for measuring 
queue development. The 3D status visualization package is in 
development. 

Further work is planned with a view to ensuring that the 
tools described in this paper reach production maturity, and 
can be seamlessly integrated in the operation of the TDAQ 
system. Furthermore, the network monitoring data obtained 
will assist in the detection and diagnosis of wider system 
performance issues. 
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