Versatile FPGA-based Hardware Platform for Gigabit Ethernet Applications

Matei Ciobotaru^{1,2} Mihai Ivanovici^{1,2} Razvan Beuran^{1,2} Stefan Stancu³

¹ CERN, Geneva, Switzerland
 ² "Politehnica" University, Bucharest, Romania
 ³ University of California, Irvine, CA

Outline

Motivation

- Hardware platform architecture
- Applications and results
 - Network Tester
 - Network Emulator

Motivation

- Experiments at the Large Hadron Collider @ CERN
 - Generate large amounts of data (Gigabytes/s)
 - Processing farms based on Gigabit Ethernet networks (1000's PCs and switches) (for the ATLAS detector)
 - Real-time Data Acquisition systems → reliable and predictable network operation
- The need for tools to evaluate the components of the Data Acquisition networks
 - A network tester for switch performance evaluation
 - A network emulator for application performance assessment
 - All running at Gigabit speed!

Solution

- Custom tool
 - Best fits our needs
- Hardware implementation
 - High precision, fast operation
- FPGA-based platform
 - FPGA → programmable logic device
 - Multiple parallel processes
- □ PCI → Standard control interface
 - High density on commodity hardware (PC)

Hardware Platform – The GETB

- Custom-design PCI card
 - Altera Stratix FPGA
 - 2 Gigabit Ethernet ports

GETB = Gigabit Ethernet Test Board

FPGA Firmware

- Handel-C programming language
 - High-level C-like hardware description language – www.celoxica.com
 - Easy-to-write communicating parallel processes
 - Rapid development and translation into hardware
- Multiple clock domains (33–125MHz)

- Message passing architecture
 - Reusability & independent module design
 - Asynchronous concurrent processes
 - Low-level functionality shared by all projects
- Commercial IP cores (IP = Intellectual Property)
- Gigabit Ethernet MAC , PCI Controller

Network Tester – Context

Study the performance and functionality of a given System Under Test (SUT)

- Inject artificial traffic into the SUT
 - Customizable traffic patterns
- Measure network parameters
 - Packet loss, one-way delay, throughput

- Existing commercial testers
 - Built for standard RFC benchmarks
 - Limited set of traffic patterns
 - Expensive

Network Tester – Features

- Traffic Generator and Measurement System
 - 1 Gigabit/s for all packet sizes (bidirectionally) – Raw Ethernet and IP
 - 1 GETB card → 2 Tester ports
- User-defined traffic patterns
 - Deterministic (packet descriptors)
 - Client-Server (request-response)

- Real-time measurements
 - Throughput, packet loss, latency and inter-packet time (IPG)
 - Histograms for latency, IPG, packet size
- Control system
 - Based on the Python scripting language
 - Distributed → 64 cards in 15 hosts (128 ports in total)

Network Tester – System Setup

Network Tester – Results

- We tested QoS mechanisms, in this case Weighted Round Robin (WRR) scheduling
- Multiple transmitters (8) sent traffic to the same destination, each one with a different priority
- We measured the received rate for each transmitted stream

Priority	0	1	2	3	4	5	6	7
Weight [%]	3	6	8	11	14	17	19	22

Network Emulator – Context

Study the behaviour of an application under different network conditions

- Network-in-a-box
 - Wide range of network conditions in a laboratory setup
 - Hybrid technique between computer simulation and tests in real networks
- Uses of a network emulator
 - Application assessment
 - Protocol development
- Short debugging cycles

Network Emulator – Features

- User-defined network conditions
 - Correlated loss and variable delay
- Traffic differentiation
 - Flow classification (based on IP header)
 - Multiple queues

- Quality degradation through background traffic generation
 - Constant Bit Rate and Poisson distributions
- Rate limitation

Network Emulator – Results

- Quality degradation through background traffic generation
- Tested application: Internet "browsing" (HTTP transfers)
- Site download duration vs. offered background traffic load
- Other applications: VoIP, Video streaming, etc.

Summary

- Custom-design FPGA-based platform
 - Accurate, deterministic
 - High packet rates (1 Gbps ~ 1.5 Million packets/second)
 - Versatile → Two Gigabit Ethernet projects
- Network Tester
 - Flexible Traffic Generator
 - Real-time Measurements
 - High-port density (128 ports)
- Network Emulator
 - Reproducible and controllable network quality degradation
 - Application behaviour evaluation (HTTP, VoIP, Video streaming)

End of presentation

■ Backup slides

ATLAS TDAQ Network

ATLAS TDAQ Network

- Gigabit Ethernet
- Layer 2 only
 - Only switches
 - ~ 1000 end-nodes
- Sustained rates
 - 5 Gb/s on average

Requirements

- Minimal packet loss
- Minimal latency
- High Performance Switches
- Try before you buy

Network Tester – Packet Generation

- Independent Generators
 - Packet descriptors
 - Modify MAC addresses, packet size, inter-packet time, IP headers, etc.
 - Wide range of traffic patterns
 - Ethernet and IP packets, VLANs

- Client Server
 - ATLAS-like request-reply traffic
 - Clients send data request packets to servers; Servers send back replies
 - Clients use a token-based system to control network load

Quality of Service (Variant)

- 8 transmitters, each sending traffic with a different priority
- The switch uses Weighted Round Robin Scheduling
- Result obtained using data collected by one GETB tester port

Network Tester – ATLAS Traffic

- Performance for ATLAS Traffic (funnel-shaped traffic pattern)
 - Depends on the number of buffers
- Determine the maximum load the clients can receive without loss

Network Tester – Full-Mesh Traffic

Fully-meshed traffic performance

Buffer Sizes

- Custom method for measuring buffer sizes
- □ 3 devices → 3 different memory management techniques
- Size of buffers important for the ATLAS traffic pattern

MAC Address Table

- Switch advertises16000 entries in the MAC table
- Measurement reveals problems for more than 5000 addresses

Latency Measurement

Latency for a fully-meshed traffic pattern

Sample Histogram

 Example of histogram of Inter-packet Time for a Negative Exponential distribution

Features

- Packets can be classified according to source or VLAN ID
- Latency, IPG and packet size can be histogrammed
- User defined resolution and histogram window (start offset, length)

Handel-C – www.celoxica.com

- Hardware description language
 - Like VHDL, but with syntax similar to C
 - The result of the compilation is the description of an electrical circuit
- Contains built-in parallel constructs
- Synchronization primitives: channels, semaphores
- Special features
 - Arbitrary widths on variables
 - Enhanced bit manipulation operators
- Simple timing model
 - Each assignment is one clock cycle
- Support for hardware constructs
 - Multiple clock domains, on-chip memories, external interfaces

```
Sequential Block

// 3 Clock Cycles
{
   a=1;
   b=2;
   c=3;
}
```

```
Parallel Block

// 1 Clock Cycle
par{
    a=1;
    b=2;
    c=3;
}
```

Python Language – www.python.org

- Features
 - Object oriented
 - Easy to learn, read, use
 - Extremely portable
 - Extensible (new modules)
- What is it used for?
 - Rapid prototyping
 - Scientific applications
 - Extension language
 - Web programming

```
class Stack:
   "A well-known data structure"
  def init (self):
   constructor
     self.items = []
  def push(self, x):
     self.items.append(x)
  def pop(self):
     x = self.items[-1]
     del self.items[-1]
     return x
  def empty(self):
     return len(self.items) == 0
```